An Obligate Role of Oxytocin Neurons in Diet Induced Energy Expenditure

نویسندگان

  • Zhaofei Wu
  • Yuanzhong Xu
  • Yaming Zhu
  • Amy K. Sutton
  • Rongjie Zhao
  • Bradford B. Lowell
  • David P. Olson
  • Qingchun Tong
چکیده

Oxytocin neurons represent one of the major subsets of neurons in the paraventricular hypothalamus (PVH), a critical brain region for energy homeostasis. Despite substantial evidence supporting a role of oxytocin in body weight regulation, it remains controversial whether oxytocin neurons directly regulate body weight homeostasis, feeding or energy expenditure. Pharmacologic doses of oxytocin suppress feeding through a proposed melanocortin responsive projection from the PVH to the hindbrain. In contrast, deficiency in oxytocin or its receptor leads to reduced energy expenditure without feeding abnormalities. To test the physiological function of oxytocin neurons, we specifically ablated oxytocin neurons in adult mice. Our results show that oxytocin neuron ablation in adult animals has no effect on body weight, food intake or energy expenditure on a regular diet. Interestingly, male mice lacking oxytocin neurons are more sensitive to high fat diet-induced obesity due solely to reduced energy expenditure. In addition, despite a normal food intake, these mice exhibit a blunted food intake response to leptin administration. Thus, our study suggests that oxytocin neurons are required to resist the obesity associated with a high fat diet; but their role in feeding is permissive and can be compensated for by redundant pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ablation of Sim1 Neurons Causes Obesity through Hyperphagia and Reduced Energy Expenditure

Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1(+/-) mice and conditional postnatal Sim1(-/-) mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity...

متن کامل

Leptin Activates Oxytocin Neurons of the Hypothalamic Paraventricular Nucleus in Both Control and Diet-Induced Obese Rodents

The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been in...

متن کامل

Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice

Caffeine, an antagonist of the adenosine receptor A1R, is used as a dietary supplement to reduce body weight, although the underlying mechanism is unclear. Here, we report that adenosine level in the cerebrospinal fluid, and hypothalamic expression of A1R, are increased in the diet-induced obesity (DIO) mouse. We find that mice with overexpression of A1R in the neurons of paraventricular nucleu...

متن کامل

Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats.

Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) o...

متن کامل

Ablation of Oxytocin Neurons Causes a Deficit in Cold Stress Response

The paraventricular nucleus (PVN) is a critical locus of energy balance control. Three sets of neurons in the PVN are involved in regulating energy balance: oxytocin-expressing neurons (OXT-neurons), thyrotropin-releasing hormone-expressing neurons, and corticotrophin-releasing hormone-expressing neurons. To examine the role of OXT-neurons in energy balance, we ablated these neurons in mice by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012